jueves, 21 de marzo de 2013

Tema 2: Elementos químicos y Tabla periódica


Introducción a la Química – Quinto Primera – EGEOR

EJE TEMATICO 0 – INTRODUCCION Y REPASO
Tema 2: Elementos químicos y Tabla periódica

1. Estructura atómica

Antecedentes históricos
En el siglo V a.C., Leucipo pensaba que sólo había un tipo de materia. Sostenía, además, que si dividíamos la materia en partes cada vez más pequeñas, acabaríamos encontrando una porción que no se podría seguir dividiendo. Un discípulo suyo, Demócrito, bautizó a estas partes indivisibles de materia con el nombre de átomos, término que en griego significa “que no se puede dividir”.
La teoría de Demócrito y Leucipo, en el siglo V antes de Cristo era, sobre todo, una teoría filosófica, sin base experimental. Y no pasó de ahí hasta el siglo XIX.
En 1808, John Dalton publicó su teoría atómica, que retomaba las antiguas ideas de Leucipo y Demócrito.
Esta teoría establece que:
1.- La materia está formada por minúsculas partículas indivisibles llamadas ÁTOMOS.
2.- Los átomos de un mismo elemento químico son todos iguales entre sí y diferentes a los demás átomos de los demás elementos.
3.- Los compuestos se forman al unirse los átomos de dos o más elementos en proporciones constantes y sencillas.
4.- En las reacciones químicas los átomos se intercambian; pero, ninguno de ellos desaparece ni se transforma.

El electrón

Al estudiar los fenómenos eléctricos se llegó a la conclusión de que la teoría de Dalton era errónea y, por tanto, debían existir partículas más pequeñas que el átomo, que serían las responsables del comportamiento eléctrico de la materia.
El físico J. J. Thompson realizó experiencias en tubos de descarga de gases (Tubos de vidrio que contenían un gas a muy baja presión y un polo positivo (ánodo) y otro negativo (cátodo) por donde se hacía pasar una corriente eléctrica con un elevado voltaje). Observó que se emitían unos rayos desde el polo negativo hacia el positivo, los llamó rayos catódicos.
Al estudiar las partículas que formaban estos rayos se observó que eran las mismas siempre, cualquiera que fuese el gas del interior del tubo. Por tanto, en el interior de todos los átomos existían una o más partículas con carga negativa llamadas electrones.

El protón

El físico alemán E. Goldstein realizó algunos experimentos con un tubo de rayos catódicos con el cátodo perforado. Observó unos rayos que atravesaban al cátodo en sentido contrario a los rayos catódicos. Recibieron el nombre de rayos canales. El estudio de estos rayos determinó que estaban formados por partículas de carga positiva y que tenían una masa distinta según cual fuera el gas que estaba encerrado en el tubo. Esto aclaró que las partículas salían del seno del gas y no del electrodo positivo.
Al experimentar con hidrógeno se consiguió aislar la partícula elemental positiva o protón, cuya carga es la misma que la del electrón pero positiva y su masa es 1837 veces mayor.

El neutrón

Mediante diversos experimentos se comprobó que la masa de protones y electrones no coincidía con la masa total del átomo; por tanto, el físico E. Rutherford supuso que tenía que haber otro tipo de partícula subatómica en el núcleo de los átomos.
Estas partículas se descubrieron en 1932 por el físico J. Chadwick. Al no tener carga eléctrica recibieron el nombre de neutrones. El hecho de no tener carga eléctrica hizo muy difícil su descubrimiento.
Los neutrones son partículas sin carga y de masa algo mayor que la masa de un protón.

Identificación de átomos

La identidad de un átomo y sus propiedades vienen dadas por el número de partículas que contiene. Lo que distingue a unos elementos químicos de otros es el número de protones que tienen sus átomos en el núcleo. Este número se llama Número atómico y se representa con la letra Z. Se coloca como subíndice a la izquierda del símbolo del elemento correspondiente.
El Número másico nos indica el número total de partículas que hay en el núcleo, es decir, la suma de protones y neutrones. Se representa con la letra A y se sitúa como superíndice a la izquierda del símbolo del elemento. Representa la masa del átomo medida  en uma (unidad de masa atómica), ya que la de los electrones es tan pequeña que puede despreciarse.
El símbolo tiene número atómico Z = 1. Por tanto, quiere decir que ese átomo tiene 1 protón en el núcleo. Es Hidrógeno.
El símbolo tiene número másico A = 2. Por tanto, quiere decir que ese átomo tiene 2 partículas en el núcleo, entre protones y neutrones. Como Z = 1, tiene 1 protón y A – Z = 2 - 1 = 1 neutrón.
El número atómico nos indica también el número de electrones que tiene el átomo en su corteza (si es neutro). En este caso, en la parte superior derecha no aparece ninguna carga, por ello es neutro y tiene el  mismo número de protones que de electrones: 1 electrón.
Un catión es un átomo con carga positiva. Se origina por pérdida de electrones y se indica con un superíndice a la derecha. El símbolo de este átomo nos dice que tiene carga +1, esto indica que ha perdido un electrón. Este átomo tiene Z = 1, si fuera neutro tendría 1 electrón, al ser positivo lo ha perdido y, por ello, tiene 0 electrones.
Un anión es un átomo con carga negativa. Se origina por ganancia de electrones y se indica con un superíndice a la derecha. El símbolo de este átomo nos dice que tiene carga -1, esto indica que ha ganado 1 electrón. Este átomo tiene Z = 1, si fuera neutro tendría 1 electrón; al tener carga -1 ha ganado otro; por tanto, tiene 2 electrones.

Modelo mecano-cuántico

El modelo establece que los electrones se encuentran alrededor del núcleo ocupando posiciones más o menos probables, pero su posición no se puede predecir con exactitud.
Se llama orbital a la región del espacio en la que existe una probabilidad elevada (superior al 90 %) de encontrar al electrón. Si representamos con puntos las distintas posiciones que va ocupando un electrón en su movimiento alrededor del núcleo, obtendremos el orbital. La zona donde la nube de puntos es más densa indica que ahí es más probable encontrar al electrón.
Es un modelo matemático basado en la Ecuación de Schrödinger.
Las soluciones de esta ecuación son unos números llamados números cuánticos. Se simbolizan de la siguiente forma:
n: Número cuántico principal. Toma valores desde enteros positivos, desde n = 1 hasta n = 7. Nos indica la energía del orbital y su tamaño (cercanía al núcleo).
l: Número cuántico secundario o azimutal. Toma valores desde 0 hasta (n-1). Nos indica la forma y el tipo del orbital.
- Si l = 0 el orbital es tipo s. (Se presentan de 1 en 1).
- Si l = 1 el orbital es tipo p. (Se presentan de 3 en 3).
- Si l = 2 el orbital es tipo d. (Se presentan de 5 en 5).
- Si l = 3 el orbital es tipo f. (Se presentan de 7 en 7).
m: Número cuántico magnético. Toma valores desde - l hasta +l pasando por 0. Nos indica la orientación espacial del orbital.
s: Número cuántico de spin. Toma valores -1/2 y 1/2. Nos indica el giro del electrón en un sentido o el contrario.

Niveles de energía y orbitales

En un átomo los electrones ocuparán orbitales de forma que su energía sea la menor posible. Por ello se ordenan los orbitales en base a su nivel energético creciente.
La energía de los orbitales para átomos de varios electrones viene determinada por los números cuánticos n y l. En la figura se muestran los orbitales de los 4 primeros niveles de energía (desde n = 1 hasta n = 4) y su orden de energía.
La energía de los orbitales no coincide exactamente con el orden de los niveles, tal como se muestra en la figura a continuación. Por ejemplo, el subnivel 4s tiene una menor energía que el 3d. Todos los orbitales de un mismo tipo que hay en un nivel tienen igual energía; por eso se colocan a la misma altura.




Configuración electrónica

La configuración electrónica de un átomo es el modo en que están distribuidos los electrones alrededor del núcleo de ese átomo. Es decir, cómo se reparten esos electrones entre los distintos niveles y orbitales.
La configuración electrónica de un átomo se obtiene siguiendo unas reglas:
1.- En cada orbital sólo puede haber 2 electrones.
2.- Los electrones se van colocando en la corteza ocupando el orbital de menor energía que esté disponible.
3.- Cuando hay varios orbitales con la misma energía (3 orbitales p, por ej.) pueden entrar en ellos hasta 3.2 = 6 electrones.
Para recordar el orden de llenado de los orbitales se aplica el diagrama de Möeller que puedes ver en la imagen adjunta. Debes seguir el orden de las flechas para ir añadiendo electrones. (No todos los elementos cumplen esta regla).




Para representar la configuración electrónica de un átomo se escriben los nombres de los orbitales (1s, 2p, etc.) y se coloca como superíndice el número de electrones que ocupan ese orbital o ese grupo de orbitales.

La tabla periódica

La TABLA PERIÓDICA que hoy conocemos está constituida por columnas y filas. Donde las filas se conocen como PERIODOS y las columnas como GRUPOS. Los elementos están ordenados por el número atómico (Z), aumenta de izquierda a derecha y de arriba para abajo.
Existen 7 filas horizontales que se denominan períodos y 18 columnas verticales que se denominan grupos.
Los elementos también se clasifican en: metales (sus átomos tienden a perder electrones y formar cationes), no metales (sus átomos tienden a ganar electrones y formar aniones) y metaloides (sus átomos se transforman con dificultad en iones positivos) de acuerdo con sus propiedades para ganar o perder electrones.




Grupos y períodos

La colocación de los elementos en la tabla periódica se hace teniendo en cuenta la configuración electrónica.
En cada período aparecen los elementos cuyo último nivel de su configuración electrónica coincide con el número del período, ordenados por orden creciente de número atómico. Por ej., el período 3 incluye los elementos cuyos electrones más externos están en el nivel 3;
Na (Z = 11): 1s22s22p63s1.
Al (Z = 13): 1s22s22p63s23p1.
En cada grupo aparecen los elementos que presentan el mismo número de electrones en el último nivel ocupado o capa de valencia. Por ejemplo, todos los elementos del grupo 13 contienen 3 electrones en su capa más externa y el último electrón queda en un orbital p;
B (Z = 5): 1s22s22p1.
Al (Z = 13): 1s22s22p63s23p1.
Períodos: En la tabla periódica los elementos están ordenados de forma que aquellos con propiedades químicas semejantes, se encuentren situados cerca uno de otro.
Los elementos se distribuyen en filas horizontales, llamadas períodos. Pero los periodos no son todos iguales, sino que el número de elementos que contienen va cambiando, aumentando al bajar en la tabla periódica.
Grupos: Las columnas de la tabla reciben el nombre de grupos. Existen dieciocho grupos, numerados desde el número 1 al 18. Los elementos situados en dos filas fuera de la tabla pertenecen al grupo 3.
En un grupo, las propiedades químicas son muy similares, porque todos los elementos del grupo tienen el mismo número de electrones en su última o últimas capas. La configuración electrónica de su última capa es igual, variando únicamente el periodo del elemento.

Propiedades periódicas

La utilidad de la Tabla Periódica reside en que la ordenación de los elementos químicos permite poner de manifiesto muchas regularidades y semejanzas en sus propiedades y comportamientos. Por ejemplo, todos los elementos de un mismo grupo poseen un comportamiento químico similar, debido a que poseen el mismo número de electrones en su capa más externa (estos electrones son los que normalmente intervienen en las reacciones químicas).
Existen, por tanto, muchas propiedades de los elementos que varían de forma gradual al movernos en un determinado sentido en la tabla periódica, como son: radio atómico, energía de ionización, carácter metálico y electronegatividad.
Radio atómico: Es la distancia que existe entre el núcleo y la capa de valencia (la más externa).
Energía de ionización: Es la energía necesaria para separar totalmente el electrón más externo del átomo en estado gaseoso.
Carácter metálico: Un elemento se considera metal, desde un punto de vista electrónico, cuando cede fácilmente electrones y no tiene tendencia a ganarlos.
Electronegatividad: Es la tendencia que tienen los átomos a atraer hacia sí los electrones en un enlace químico.

Elementos, clasificación y propiedades

La clasificación más fundamental de los elementos químicos es en metales y no metales.
Los metales se caracterizan por su apariencia brillante, capacidad para cambiar de forma sin romperse (maleables) y una excelente conductividad del calor y la electricidad.
Los no metales se caracterizan por carecer de estas propiedades físicas aunque hay algunas excepciones (por ejemplo, el yodo sólido es brillante; el grafito, es un excelente conductor de la electricidad; y el diamante, es un excelente conductor del calor).
Las características químicas son: los metales tienden a perder electrones para formar iones positivos y los no metales tienden a ganar electrones para formar iones negativos. Cuando un metal reacciona con un no metal, suele producirse transferencia de uno o más electrones del primero al segundo.

Propiedad de los metales

Poseen bajo potencial de ionización y alto peso específico. Por regla general, en su último nivel de energía tienen de 1 a 3 electrones. Son sólidos a excepción del mercurio (Hg), galio (Ga), cesio (Cs) y francio (Fr), que son líquidos. Presentan aspecto y brillo metálicos. Son buenos conductores del calor y la electricidad. Son dúctiles y maleables, algunos son tenaces, otros blandos. Se oxidan por pérdida de electrones. Su molécula está formada por un solo átomo, su estructura cristalina al unirse con el oxígeno forma óxidos y éstos al reaccionar con el agua forman hidróxidos. Los elementos alcalinos son los más activos.

Propiedades generales de los no-metales

Tienen tendencia a ganar electrones. Poseen alto potencial de ionización y bajo peso específico. Por regla general, en su último nivel de energía tienen de 4 a 7 electrones Se presentan en los tres estados físicos de agregación. No poseen aspecto ni brillo metálico. Son malos conductores de calor y la electricidad. No son dúctiles, ni maleables, ni tenaces. Se reducen por ganancia de electrones. Sus moléculas están formadas por dos o más átomos. Al unirse con el oxígeno forman anhídridos y éstos al reaccionar con el agua, forman oxiácidos.
Los halógenos y el oxígeno son los más activos. Varios no-metales presentan alotropía.
La mayoría de los elementos se clasifican como metales. Los metales se encuentran del lado izquierdo y al centro de la tabla periódica. Los no metales, que son relativamente pocos, se encuentran el extremo superior derecho de dicha tabla. Algunos elementos tienen comportamiento metálico y no metálico y se clasifican como metaloides y semimetales.
Los no metales también tienen propiedades variables, al igual que los metales. En general los elementos que atraen electrones de los metales con mayor eficacia se encuentran en el extremo superior derecho de la tabla periódica.

Breve descripción de las propiedades y aplicaciones de algunos elementos de la Tabla Periódica.

Gases nobles o gases raros
Los gases nobles, llamados también raros o inertes, entran, en escasa proporción, en la composición del aire atmosférico. Pertenecen a este grupo el helio, neón, argón, criptón, xenón y radón, que se caracterizan por su inactividad química, puesto que tienen completos sus electrones en la última capa. No tienen tendencia por tanto, ni a perder ni a ganar electrones. De aquí que su valencia sea cero o que reciban el nombre de inertes, aunque a tal afirmación se tiene hoy una reserva que ya se han podido sintetizar compuestos de neón, xerón o kriptón con el oxígeno, el flúor y el agua.
El helio se encuentra en el aire; el neón y el kriptón se utilizan en la iluminación por sus brillantes colores que emiten al ser excitados, el radón es radioactivo.

Los metales alcalinos son aquellos que se encuentran en el primer grupo dentro de la tabla periódica.
Con excepción del hidrógeno, son todos blancos, brillantes, muy activos, y se les encuentra combinados en forma de compuestos. Se les debe guardar en la atmósfera inerte o bajo aceite.
Los compuestos de los metales alcalinos son isomorfos, lo mismo que los compuestos salinos del amonio. Este radical presenta grandes analogías con los metales de este grupo.
Estos metales, cuyos átomos poseen un solo electrón en la capa externa, son monovalentes. Dada su estructura atómica, ceden fácilmente el electrón de valencia y pasan al estado iónico. Esto explica el carácter electropositivo que poseen, así como otras propiedades.
Los de mayor importancia son el sodio y el potasio, sus sales son empleadas industrialmente en gran escala.

Se conocen con el nombre de metales alcalinotérreos los seis elementos que forman el grupo IIA del sistema periódico: berilio, magnesio, calcio,  estroncio, bario y radio. Son bivalentes y se les llama alcalinotérreos a causa del aspecto térreo de sus óxidos.
El radio es un elemento radiactivo.
Estos elementos son muy activos aunque no tanto como los del grupo I. Son buenos conductores del calor y la electricidad, son blancos y brillantes.
Como el nombre indica, manifiestan propiedades intermedias entre los metales alcalinos y los térreos; el magnesio y, sobre todo, el berilio son los que más se asemejan a estos.
No existen en estado natural, por ser demasiado activos y, generalmente, se presentan formando silicatos, carbonatos, cloruros y sulfatos, generalmente insolubles.
Estos metales son difíciles de obtener, por lo que su empleo es muy restringido.

Grupo III, familia del boro
El boro es menos metálico que los demás. El aluminio es anfótero. El galio, el indio y el talio son raros y existen  en cantidades mínimas. El boro tiene una amplia química de estudio.

Grupo IV, Familia del carbono
El estudio de los compuestos del carbono corresponde a la Química Orgánica. El carbono elemental existe como diamante y grafito.
El silicio comienza a ser estudiado ampliamente por su parecido con el carbono. Los elementos restantes tienen más propiedades metálicas.
Grupo V, familia del nitrógeno
Se considera a este grupo como el más heterogéneo de la tabla periódica. El nitrógeno está presente en compuestos tales como las proteínas, los fertilizantes, los explosivos y es constituyente del aire. Como se puede ver, se trata de un elemento tanto benéfico como perjudicial. El fósforo tiene ya una química especial de estudio, sus compuestos son generalmente tóxicos. El arsénico es un metaloide venenoso. El antimonio tiene gran parecido con el aluminio, sus aplicaciones son más de un metal.

Grupo VI, Colágenos
Los cinco primeros elementos son no-metálicos, el último, polonio, es radioactivo. El oxígeno es un gas incoloro constituyente del aire. El agua y la tierra. El azufre es un sólido amarillo y sus compuestos por lo general son tóxicos o corrosivos. La química del teluro y selenio es compleja.

Grupo VII, halógenos
El flúor, el cloro, el bromo, el yodo y el astato, llamados metaloides halógenos, constituyen el grupo de los no metales monovalentes. Todos ellos son coloreados en estado gaseoso y, desde el punto de vista químico, presentan propiedades electronegativas muy acusadas, de donde se deriva la gran afinidad que tienen con el hidrógeno y los metales.

Los formadores de sal se encuentran combinados en la naturaleza por su gran actividad. Las sales de estos elementos con los de los grupos I y II están en los mares. Las propiedades de los halógenos son muy semejantes. La mayoría se sus compuestos derivados son tóxicos, irritantes, activos y tienen gran aplicación tanto en la industria como en el laboratorio.

El astatinio o ástato difiere un poco del resto del grupo.

Elementos de transición
Esta es una familia formada por los grupos IIIB, IVB, VB, VIB, VIIB, IB y IIB, entre los que se encuentran los elementos cobre, fierro, zinc, oro, plata, níquel y platino.
Las características de los metales de transición son muy variadas, algunos se encuentran en la naturaleza en forma de compuestos; otros se encuentran libres
Estos elementos no son tan activos como los representativos, todos son metales y por tanto son dúctiles, maleables, tenaces, con altos puntos de fusión y ebullición, conductores del calor y la electricidad. Poseen orbitales semilleros, y debido a esto es su variabilidad en el estado de oxidación.
Debido al estado de oxidación, los compuestos son coloridos.


ALGUNOS ELEMENTOS QUE CAUSAN CONTAMINACIÓN
En la naturaleza existen algunos elementos que debido a su estructura o en combinación con otros en forma de compuestos, son perjudiciales al hombre, ya que son agentes contaminadores del medio ambiente; en especial del aire, agua y suelo, o bien, porque ocasionan daños irreversibles al ser humano, como la muerte.
Algunos de estos elementos son:
Antimonio (Sb) y textiles.- Se emplea en aleaciones, metal de imprenta, baterías, cerámica. El principal daño que provoca es el envenenamiento por ingestión o inhalación de vapores, principalmente por un gas llamado estibina SbH3.
Arsénico (As) medicamentos y vidrio. Se emplea en venenos para hormigas, insecticidas, pinturas, Es uno de los elementos más venenosos que hay, así como todos los compuestos.
Azufre (S) Principalmente son óxidos SO2 y SO3 contaminan el aire y con agua producen la lluvia ácida. Sustancias tales como derivados clorados de azufre, sulfatos y ácidos son corrosivas. El gas H2S es sumamente tóxico y contamina el aire. El azufre es empleado en algunos medicamentos para la piel.
Bromo (Br) Sus vapores contaminan el aire, además sus compuestos derivados son lacrimógenos y venenosos.
Cadmio (Cd) Metal tóxico que se origina en la refinación del zinc; también proviene de operaciones de electrodeposición y por tanto contamina el aire y el agua. Contenido en algunos fertilizantes contamina el suelo.
Cloro (Cl) Sus valores contaminan el aire y son corrosivos. Se le emplea en forma de cloratos para blanquear la ropa, para lavados bucales y fabricación de cerillos. Los cloratos son solubles en agua y la contaminan, además de formar mezclas explosivas con compuestos orgánicos.
Los valores de compuestos orgánicos clorados como insecticidas, anestésicos y solventes dañan el hígado y el cerebro. Algunos medicamentos que contienen cloro afectan el sistema nervioso.
Cromo (Cr) El cromo y sus compuestos son perjudiciales al organismo, pues destruyen todas las células. Se le emplea en síntesis orgánicas y en la industria del acero. Cualquier cromato soluble contamina el agua.
Magnesio (Mn) Se emplea en la manufactura de acero y de pilas secas. La inhalación de polvos y humos conteniendo magnesio causa envenenamiento. También contamina el agua y atrofia el cerebro.
Mercurio (Hg) Metales de gran utilidad por ser líquidos; se utiliza en termómetros y por ser buen conductos eléctrico se emplea en aparatos de este tipo, así como en iluminación, pinturas fungicidas, catalizadores, amalgamas dentales, plaguicidas, etc. pero contamina el agua, el aire y causa envenenamiento. Las algas lo absorben, luego los peces y finalmente el hombre. Los granos o semillas lo retienen  y finalmente el hombre los come.
Plomo (Pb) El plomo se acumula en el cuerpo conforme se inhala del aire o se ingiere con los alimentos y el agua. La mayor parte del plomo que contamina el aire proviene de las gasolinas para automóviles, pues se le agrega para proporcionarle propiedades antidetonantes. También se le emplea en pinturas, como metal de imprenta, soldaduras y acumuladores. Por su uso el organismo se afecta de saturnismo. Sus sales, como el acetato, son venenosas.
Existen otros elementos que de alguna forma contaminan el agua, el aire y el suelo tales como: talio, zinc, selenio, oxígeno de nitrógeno, berilio, cobalto y sobre todo gran cantidad de compuestos que tienen carbono. (Orgánicos).
Aluminio (Al): Metal ligero, resistente a la corrosión y al impacto, se puede laminar e hilar, por lo que se le emplea en construcción, en partes de vehículos, de aviones y en artículos domésticos. Se le extrae de la bauxita.
Azufre (S): No metal, sólido de color amarillo, se encuentra en yacimientos volcánicos y aguas sulfuradas. Se emplea en la elaboración de fertilizantes, medicamentos, insecticidas, productos químicos y petroquímicos.
Cobalto (Co): Metal color blanco que se emplea en la elaboración de aceros especiales debido a su alta resistencia al calor, corrosión y fricción. Se emplea en herramientas mecánicas de alta velocidad, imanes y motores. En forma de polvo se emplea como pigmento azul para el vidrio. Es catalizador. Su isótopo radiactivo se emplea como pigmento azul para el vidrio. Es catalizador
Cobre (Cu): Metal de color rojo que se carbonata al aire húmedo y se pone verde, conocido desde la antigüedad. Se emplea principalmente como conductor eléctrico, también para hacer monedas y en aleaciones como el latón y el bronce.
Hierro (Fe): Metal dúctil, maleable de color gris negruzco, se oxida al contacto con el aire húmedo. Se extrae de minerales como la hematina, limonita, pirita, magnetita y siderita. Se le emplea en la industria arte y medicina. Para fabricar acero, cemento, fundiciones de metales no ferrosos nuestra sangre lo contiene en la hemoglobina.
Flúor (F): Este no metal está contenido en la fluorita CaF2 en forma de vetas encajonadas en calizas. La florita se emplea como fundente en hornos metalúrgicos. Para obtener HF, NHF4  y grabar el vidrio; también en la industria química, cerámica y potabilización del agua.
Fósforo (P): Elemento no metálico que se encuentra en la roca fosfórica que contiene P2 O5 en la fosforita Ca3 (PO4)2. Los huesos y dientes contienen este elemento.
Tiene aplicaciones para la elaboración de detergentes, plásticos, lacas, pinturas, alimentos para ganado y aves.
 Mercurio (Hg): Metal líquido a temperatura ambiente, de calor blanco brillante, resistente a la corrosión y buen conductor eléctrico. Se le emplea en la fabricación de instrumentos de precisión, baterías, termómetros, barómetros, amalgamas dentales, sosa cáustica, medicamentos, insecticidas y funguicidas y bactericidas.
Se le obtiene principalmente del cinabrio que contiene HgS.
Plata (Ag): Metal de color blanco, su uso principal ha sido el la acuñación de monedas y manufacturas de vajillas y joyas. Se emplea en fotografía, aparatos eléctricos, aleaciones, soldaduras.
Plomo (Pb): Metal blando de bajo punto de fusión, bajo límite elástico, resistente a la corrosión, se le obtiene del sulfuro llamado galena Pbs. Se usa en baterías o acumuladores, pigmentos de pinturas, linotipos. Soldaduras e investigaciones atómicas. Otros productos que se pueden recuperar de los minerales que lo contiene son: cadmio, cobre, oro, plata, bismuto, arsénico, telurio y antimonio.
 Oro (Au): Metal de color amarillo, inalterable, dúctil, brillante, por sus propiedades y su rareza le hace ser excepcional y de gran valor. Es el patrón monetario internacional. En la naturaleza se encuentra asociado al platino, a la plata y teluro en unos casos. Sus aleaciones se emplean en joyería y ornamentos, piezas dentales, equipos científicos de laboratorio. Recientemente se ha sustituido sus usos en joyería por el iridio y el rutenio, en piezas dentales por platino y paladio.
Uranio (U): Utilizado como combustible nuclear, es un elemento raro en la naturaleza y nunca se presenta en estado libre. Existen 150 minerales que lo contienen. El torio se encuentra asociado al uranio.


Actividades prácticas

Guía de Ejercitación
1. Completa la siguiente tabla:




2. Razonar las siguientes cuestiones:
a) En las siguientes parejas de elementos, ¿cuál de ellos tiene mayor radio atómico?
1) Li - K 2) Se – O 3) Na - S 4) I - Rb

b) Con las mismas parejas de antes. ¿Qué elemento de la pareja tendrá mayor energía de ionización? ¿Y mayor afinidad electrónica? ¿Y mayor electronegatividad?

c) ¿Por qué el conjunto de los metales de transición está formado por diez grupos?

d) Si la configuración electrónica de la última capa de un elemento neutro es 5s2p2. ¿De qué elemento se trata?

e) El átomo no puede ser neutro porque contiene cargas eléctricas. ¿verdadero o falso?

f) ¿Por qué, después del descubrimiento del protón, era necesaria la existencia de otra partícula sin carga? ¿De qué partícula se trataba?

3. Completar el siguiente cuadro: